Public acceptance of wind energies located near the nuclear power plant

Kaiqi Liu, Shigeo Nishikizawa, Takehiko Murayama, Kultip Suwanteep

Tokyo Institute of Technology

Japan

liu.k.ag@m.titech.ac.jp

- Introduction.
- Objectives & Hypotheses.
- Methodology.
- Results.
- Conclusion & Discussion.

CHAPTER 1. BACKGROUND

Background - Energy situation

Global Nuclear power and Wind power Consumption and Proportion Data source: bp Statistical Review of World Energy

- Wind energy and nuclear energy are developing rapidly
- More overlaps between suitable areas for wind energy and nuclear energy
- Wind energy and nuclear energy compete with each other

4

Tokyo Tech

Background - Social acceptance concept

- Public acceptance significantly influence energy development
- Community acceptance is lower than socio-political acceptance
- Local disputes hinder renewable energy development

Social acceptance of renewable energy Source: Wüstenhagen et al (2007)

Author	Key Focus / Findings
Michael Greenberg (2009)	Public in regions where nuclear facilities exist and where electricity is primarily derived from nuclear power may be more supportive of nuclear energy than other energy sources, including wind energy
Desvallées L and Arnauld De Sartre X (2023)	France's strong nuclear energy industry has hindered local acceptance and development of the wind industry
Cousse et al (2020)	Socio-political acceptance is high, but it faces a number of issues at the level of community acceptance.
Sonnberger M and Ruddat M (2017)	Socio-political acceptance is significantly higher than community acceptance. The various acceptance factors have different effects on both the socio-political and the local acceptance.

Research gaps

- Few research have focused on the relationships between the acceptance of multiple forms of energy, particularly, research exploring the relationship between the acceptance of wind and attitudes towards nuclear energy is very limited.
- Not well clarified the differences in factors affecting the acceptance of wind energy by local residents and general public: particularly of local benefit and risk

CHAPTER 2. OBJECTIVES & HYPOTHESES

Objectives and viewpoints

Objective 1

 Clarifying the relationship between the acceptance of wind energy and public attitudes towards nuclear energy Viewpoints of comparison

Objective 2

 Analyzing differences in wind energy acceptance and influencing pathways between the general public and local residents, and proposing Enhanced Energy Acceptance Model (EEAM) for wind energy

For objective 1

• H1: There is a negative correlation between public attitude towards nuclear energy and wind energy acceptance.

For objective 2

- H2 & H3: The independent variables indirectly affect wind energy acceptance by affecting the mediator variables of perceived benefits (H2) and risks (H3).
- H4: Perceived benefits of wind energy have a positive effect on the acceptance of wind energy.
- H5: Perceived risks of wind energy have a negative effect on the acceptance of wind energy.

CHAPTER 3. METHODOLOGY

Methodology - Framework

Methodology - Conceptual Model for Acceptance

Methodology - Questionnaire design

Section 1: Introduction

Section 2: Personal characteristic

·Gender ·Age ·Education level ·Annual income ·Work type ·Electricity costs ·Residence time ·Love Dalian ·Environmental concern ·Participation in wind energy ·Participation in nuclear energy ·Distance to wind farm ·Distance to nuclear power plant

Section 3: Awareness of wind energy

•Knowing the wind power plants •Experiences •Knowledge •Trusting government •Trusting company •Subjective norms •Affective imagery •Perceived noise •Perceived other impact

Section 4: Perceived benefits and risks of wind energy

·Economic benefits ·Social benefits ·Environmental benefits ·Health risks ·Environmental risks ·Landscape risks ·Accident risks

Section 5: Perceived benefits and risks of nuclear energy

Knowing the nuclear power plant
 Economic benefits
 Social benefits
 Environmental benefits
 Health risks
 Environmental risks
 Landscape risks
 Accident risks

Section 6: Acceptance and preferences

Acceptance of existing wind energy ·and nuclear energy ·Further acceptance of wind energy ·and nuclear energy ·Acceptable distance to wind turbine ·and nuclear facility ·Which energy is better ·Which energy preferred ·Whether nuclear facility affect wind energy development ·Additional benefits of nuclear ·and wind energy

- **50 questions** to survey attitudes towards wind and nuclear energy.
- 5-point Likert scale.
 From 1='strongly disagree' to 5='strongly agree'

• The online and offline surveys used almost same questions.

Online -Distance was answered by questionnaire. Offline -Distance was calculated using ArcGIS.

Section 7: Free text

Methodology - Research Area: Dalian City

Location of Dalian Source: Ministry of Natural Resources of China

- High proportion of clean energy
- Largest nuclear power plant in China

Power generation of Dalian City in 2020 Data source: Liaoning Provincial Bureau of Statistics

- Significant potential for wind power generation
- Low solar potential and lacks hydro energy

Methodology - Survey design

Respondents:

General public of whole Dalian City

Survey method:

Random survey by online survey company

Survey time period:

2023.8.11~2023.11.08

Respondents:

Local residents living in villages within 1km of wind farms

Survey method:

Comprehensive survey through face-toface interviews

Survey time period: 2023.8.23~ 9.03

Methodology - Survey Area

Nuclear power plant and wind power plants location Source: Liaoning Provincial Department of Natural Resources

Details of power plants

Power plant	Nuclear unit / Wind turbine	Total installed capacity	Completion year
Hongyanhe nuclear power plant	6 nuclear units ×745MW	6712.74MW	6 unit-2022
Tuoshan I wind farm	33 wind turbines ×1.5MW	49.5MW	2009
Tuoshan Ⅱ wind farm	33 wind turbines ×1.5MW	49.5MW	2010
Tuoshan Ⅲ wind farm	29 wind turbines ×3.2MW & 2 wind turbines ×3.0MW	98.8MW	2020
Dabeishan wind farm	33 wind turbines ×1.5MW	49.5MW	2011

Data source: Liaoning Provincial Department of Natural Resources

Methodology - Map of power plants

Source: ArcGIS

穴

Tokyo Tech

Methodology - Field photo

Wind turbines

Wind farm management station

Village

#IAIA24

CHAPTER 4. RESULTS

Survey type	Refused	Invalid	Valid	Total	Effective response rate
Offline survey - Local residents	104	17	361	482	74.9%
Online survey - General public	0	54	341	395	86.3%
Total survey - Total respondents	104	71	702	877	80.0%

Results - Descriptive statistics

Acceptance of existing wind power plants

Acceptance of further development of wind power

Strongly disagree Disagree Neither agree nor disagree

Acceptance of existing nuclear power plant

Acceptance of further development of nuclear power

Agree Strongly agree

Results - Statistical differences

Independent-samples T-test for wind energy acceptance

Attributos	Gender	
Allfibules	Online	Offline
Т	-0.270	-1.756
Р	0.978	0.080
	_	

Significant level: P<0.05

One-way ANOVA test for wind energy acceptance

Attributes	Age		Age Education lev		on level	Annual Income		Electricity Cost		Whether work related to wind energy		Residence time	
	Online	Offline	Online	Offline	Online	Offline	Online	Offline	Online	Offline	Online	Offline	
F	0.251	0.654	3.711	0.107	1.924	0.401	1.177	1.853	0.790	1.002	0.608	0.684	
Р	0.909	0.624	0.060	0.898	0.090	0.808	0.321	0.119	0.500	0.368	0.693	0.505	

Significant level: P<0.05

There are **not significant difference** of wind energy acceptance in terms of gender, age and other demographics

Results - SEM measurement model

Acceptable threshold criteria: Factor Loading (FL) > 0.5, Cronbach's α > 0.6, Composite Reliability (CR) > 0.6, Average Variance Extracted (AVE)> 0.4

	Variables	Variables Itoms Model 1ª					Model 2 ^b				Model 3 ^c						
	Valiables	ILEIIIS	Mean	FL	α	CR	AVE	Mean	FL	α	CR	AVE	Mean	FL	α	CR	AVE
Acceptance of	WAP	WAp1	3.60	0.841***	0.798	0.808	0.679	4.25	0.701***	0.651	0.653	0.485	2.98	0.825***	0.706	0.727	0.573
wind energy		WAp2	3.81	0.806***				4.34	0.692***				3.32	0.682***			
Perceived benefits	WPB	WENb	3.46	0.866***	0.885	0.889	0.728	4.23	0.734***	0.681	0.69	0.429	2.73	0.625***	0.67	0.679	0.414
or wind energy		WSb	3.36	0.872***				4.21	0.671***				2.57	0.662***			
		WECb	2.91	0.821***				3.82	0.547***				2.05	0.642***			
Perceived risks of wind energy	WPR	WAr	2.87	0.671***	0.82	0.827	0.547	2.66	0.770***	0.858	0.861	0.608	3.08	0.576***	0.684	0.687	0.426
o		WLr	2.78	0.679***				2.55	0.769***				3.00	-			
		WEr	2.87	0.814***				2.50	0.827***				3.22	0.614***			
		WHr	3.11	0.782***				2.55	0.751***				3.64	0.755***			
Acceptance of	NAP	NAp1	3.70	0.805***	0.786	0.789	0.652	3.97	0.783***	0.799	0.816	0.689	3.44	0.795***	0.717	0.719	0.562
nacioal chorgy		NAp2	3.56	0.810***				3.77	0.875***				3.36	0.702***			
Perceived benefits	NPB	NENb	3.25	0.746***	0.832	0.846	0.647	3.63	0.773***	0.78	0.787	0.552	2.90	0.628***	0.675	0.682	0.417
or nuclear energy		NSb	3.60	0.823***				4.08	0.753***				3.14	0.687***			
_		NECb	2.78	0.841***				3.61	0.700***				1.99	0.621***			
Perceived risks of nuclear energy	NPR	NAr	3.22	0.757***	0.857	0.863	0.614	3.09	0.774***	0.89	0.895	0.681	3.34	0.844***	0.76	0.775	0.538
		NLr	2.90	0.687***				2.78	0.738***				3.02	-			
		NEr	3.14	0.845***				2.91	0.877***				3.35	0.676***			
		NHr	3.16	0.835***				2.93	0.901***				3.37	0.666***			
Energy preference	ENP	Eb	3.54	0.912***	0.923	0.925	0.861	4.04	0.866***	0.886	0.887	0.796	3.07	0.924***	0.924	0.926	0.862
		Ер	3.63	0.943***				4.19	0.918***				3.10	0.933***			

Note: ***P < 0.001, "-" mean this item was deleted. a Model 1 based on all data, b Model 2 based on online survey data, c Model 3 based on #IAIA24 #IAIA24

	Energy preference	Perceived risks of nuclear energy	Perceived benefits of nuclear energy	Acceptance of nuclear energy	Perceived risks of wind energy	Perceived benefits of wind energy	Acceptance of wind energy		
Variables	ENP	NPR	NPB	NAP	WPR	WPB	WAP	AVE	
ENP	0.928							0.861	
NPR	0.169	0.784						0.614	
NPB	0.173	-0.547	0.804					0.647	
NAP	-0.178	-0.602	0.744	0.807				0.652	
WPR	-0.291	0.657	-0.494	-0.377	0.740			0.547	
WPB	0.507	-0.341	0.733	0.437	-0.596	0.853		0.728	
WAP	0.642	-0.188	0.561	0.471	-0.607	0.807	0.824	0.679	

Note: the data on the diagonal are the square roots of AVE, and the data below the diagonal are correlation coefficients. All correlation coefficients are significant at 0.01 level.

Positive relationship between WAP and NAP

Reject Hypothesis 1

H1: Negative correlation between public attitude towards nuclear energy and wind energy acceptance.

The path difference significance can be calculated by the formula suggested by Duncan (2014):

$$z = \frac{b_1 - b_2}{\sqrt{se_1^2 + se_2^2}}$$

Where b_1 and b_2 represent the unstandardized coefficients of the two paths being compared se_1 , se_2 represent their standard errors.

Results - Path comparison

Significant difference

Uvpothocia	lynothesized nath			Model 3		7	D
nypoinesiz	eu parn	Unstd.	S.E.	Unstd.	S.E.	Z	F
H2a	WPB <wd< td=""><td>n.s.</td><td></td><td>n.s.</td><td></td><td>-</td><td>n.s.</td></wd<>	n.s.		n.s.		-	n.s.
H2b	WPB <ex< td=""><td>n.s.</td><td></td><td>n.s.</td><td></td><td>-</td><td>n.s.</td></ex<>	n.s.		n.s.		-	n.s.
H2c	WPB <kn< td=""><td>n.s.</td><td></td><td>n.s.</td><td></td><td>-</td><td>n.s.</td></kn<>	n.s.		n.s.		-	n.s.
H2d	WPB <pa< td=""><td>n.s.</td><td></td><td>n.s.</td><td></td><td>-</td><td>n.s.</td></pa<>	n.s.		n.s.		-	n.s.
H2e	WPB <ec< td=""><td>0.123</td><td>0.049</td><td>-0.046</td><td>0.017</td><td>3.258</td><td><0.01</td></ec<>	0.123	0.049	-0.046	0.017	3.258	<0.01
H2f	WPB <sn< td=""><td>0.188</td><td>0.034</td><td>n.s.</td><td></td><td>-</td><td>S.</td></sn<>	0.188	0.034	n.s.		-	S.
H2g	WPB <ai< td=""><td>0.235</td><td>0.048</td><td>0.117</td><td>0.022</td><td>2.235</td><td>0.025</td></ai<>	0.235	0.048	0.117	0.022	2.235	0.025
H2h	WPB <pt< td=""><td>n.s.</td><td></td><td>0.217</td><td>0.08</td><td>-</td><td>S.</td></pt<>	n.s.		0.217	0.08	-	S.
H2i	WPB <st< td=""><td>0.333</td><td>0.051</td><td>0.209</td><td>0.028</td><td>2.131</td><td>0.033</td></st<>	0.333	0.051	0.209	0.028	2.131	0.033
H3a	WPR <wd< td=""><td>n.s.</td><td></td><td>-0.135</td><td>0.035</td><td>-</td><td>S.</td></wd<>	n.s.		-0.135	0.035	-	S.
H3b	WPR <ex< td=""><td>n.s.</td><td></td><td>n.s.</td><td></td><td>-</td><td>n.s.</td></ex<>	n.s.		n.s.		-	n.s.
H3c	WPR <kn< td=""><td>n.s.</td><td></td><td>n.s.</td><td></td><td>-</td><td>n.s.</td></kn<>	n.s.		n.s.		-	n.s.
H3d	WPR <pa< td=""><td>0.166</td><td>0.083</td><td>n.s.</td><td></td><td>-</td><td>S.</td></pa<>	0.166	0.083	n.s.		-	S.
H3e	WPR <ec< td=""><td>n.s.</td><td></td><td>0.107</td><td>0.027</td><td>-</td><td>S.</td></ec<>	n.s.		0.107	0.027	-	S.
H3f	WPR <sn< td=""><td>-0.134</td><td>0.047</td><td>0.1</td><td>0.033</td><td>-4.075</td><td><0.01</td></sn<>	-0.134	0.047	0.1	0.033	-4.075	<0.01
H3g	WPR <ai< td=""><td>n.s.</td><td></td><td>-0.203</td><td>0.034</td><td>-</td><td>S.</td></ai<>	n.s.		-0.203	0.034	-	S.
H3h	WPR <pt< td=""><td>0.173</td><td>0.1</td><td>n.s.</td><td></td><td>-</td><td>S.</td></pt<>	0.173	0.1	n.s.		-	S.
H3i	WPR <st< td=""><td>-0.176</td><td>0.069</td><td>-0.345</td><td>0.044</td><td>2.065</td><td>0.039</td></st<>	-0.176	0.069	-0.345	0.044	2.065	0.039
H4	WAP <wpb< td=""><td>0.475</td><td>0.089</td><td>1.304</td><td>0.229</td><td>-3.374</td><td><0.01</td></wpb<>	0.475	0.089	1.304	0.229	-3.374	<0.01
H5	WAP <wpr< td=""><td>n.s.</td><td></td><td>-1.01</td><td>0.147</td><td>-</td><td>S.</td></wpr<>	n.s.		-1.01	0.147	-	S.
H1a	NAP <npb< td=""><td>0.533</td><td>0.058</td><td>0.868</td><td>0.145</td><td>-2.145</td><td>0.032</td></npb<>	0.533	0.058	0.868	0.145	-2.145	0.032
H1b	NAP <npr< td=""><td>-0.172</td><td>0.035</td><td>-0.484</td><td>0.047</td><td>5.324</td><td><0.01</td></npr<>	-0.172	0.035	-0.484	0.047	5.324	<0.01
H1c	ENP <wap< td=""><td>1.022</td><td>0.153</td><td>0.583</td><td>0.046</td><td>2.748</td><td><0.01</td></wap<>	1.022	0.153	0.583	0.046	2.748	<0.01
H1d	ENP <nap< td=""><td>-0.764</td><td>0.099</td><td>-1.02</td><td>0.084</td><td>1.972</td><td>0.049</td></nap<>	-0.764	0.099	-1.02	0.084	1.972	0.049

Note: "-" means that the calculation could not be performed because the path was not significant in at least one of the models. n.s. means that the comparison is meaningless because the path was not significant in either model. s. means that a significant difference is considered to exist without calculating p-value because the path was significant in one of the models and not in the other. #IAIA24

For general public,

Environment Concern, Subjective Norms, Affective Imagery, Social Trust affect wind energy acceptance by influencing Perceived Benefits.

Perceived Risk on wind energy acceptance was not significant.

Tokyo Tech

Results - Path analysis

For local residents,

Environment Concern, Affective Imagery, Participation, Social Trust affect wind energy acceptance by influencing Perceived Benefits.

Distance, Environmental Concern, Subjective Norms, Affective Imagery, and Social Trust affect wind energy acceptance by influencing Perceived Risk.

Results - Path analysis

Uvpothosized path		Model 1	а			Model 2	2 ^b			Model 3 ^c			
пуро	inesized path	Unstd.	S.E.	Р	Std.	Unstd.	S.E.	Р	Std.	Unstd.	S.E.	Р	Std.
H2a	WPB <wd< td=""><td>0.167</td><td>0.009</td><td>***</td><td>0.598</td><td>n.s.</td><td></td><td></td><td></td><td>n.s.</td><td></td><td></td><td></td></wd<>	0.167	0.009	***	0.598	n.s.				n.s.			
H2b	WPB <ex< td=""><td>n.s.</td><td></td><td></td><td></td><td>n.s.</td><td></td><td></td><td></td><td>n.s.</td><td></td><td></td><td></td></ex<>	n.s.				n.s.				n.s.			
H2c	WPB <kn< td=""><td>0.038</td><td>0.012</td><td>0.002</td><td>0.083</td><td>n.s.</td><td></td><td></td><td></td><td>n.s.</td><td></td><td></td><td></td></kn<>	0.038	0.012	0.002	0.083	n.s.				n.s.			
H2d	WPB <pa< td=""><td>n.s.</td><td></td><td></td><td></td><td>n.s.</td><td></td><td></td><td></td><td>n.s.</td><td></td><td></td><td></td></pa<>	n.s.				n.s.				n.s.			
H2e	WPB <ec< td=""><td>n.s.</td><td></td><td></td><td></td><td>0.123</td><td>0.049</td><td>0.012</td><td>0.145</td><td>-0.046</td><td>0.017</td><td>0.007</td><td>-0.148</td></ec<>	n.s.				0.123	0.049	0.012	0.145	-0.046	0.017	0.007	-0.148
H2f	WPB <sn< td=""><td>0.076</td><td>0.02</td><td>***</td><td>0.103</td><td>0.188</td><td>0.034</td><td>***</td><td>0.338</td><td>n.s.</td><td></td><td></td><td></td></sn<>	0.076	0.02	***	0.103	0.188	0.034	***	0.338	n.s.			
H2g	WPB <ai< td=""><td>0.186</td><td>0.02</td><td>***</td><td>0.264</td><td>0.235</td><td>0.048</td><td>***</td><td>0.297</td><td>0.117</td><td>0.022</td><td>***</td><td>0.33</td></ai<>	0.186	0.02	***	0.264	0.235	0.048	***	0.297	0.117	0.022	***	0.33
H2h	WPB <pt< td=""><td>0.179</td><td>0.049</td><td>***</td><td>0.099</td><td>n.s.</td><td></td><td></td><td></td><td>0.217</td><td>0.08</td><td>0.007</td><td>0.147</td></pt<>	0.179	0.049	***	0.099	n.s.				0.217	0.08	0.007	0.147
H2i	WPB <st< td=""><td>0.326</td><td>0.02</td><td>***</td><td>0.513</td><td>0.333</td><td>0.051</td><td>***</td><td>0.408</td><td>0.209</td><td>0.028</td><td>***</td><td>0.556</td></st<>	0.326	0.02	***	0.513	0.333	0.051	***	0.408	0.209	0.028	***	0.556
H3a	WPR <wd< td=""><td>-0.08</td><td>0.011</td><td>***</td><td>-0.287</td><td>n.s.</td><td></td><td></td><td></td><td>-0.135</td><td>0.035</td><td>***</td><td>-0.202</td></wd<>	-0.08	0.011	***	-0.287	n.s.				-0.135	0.035	***	-0.202
H3b	WPR <ex< td=""><td>n.s.</td><td></td><td></td><td></td><td>n.s.</td><td></td><td></td><td></td><td>n.s.</td><td></td><td></td><td></td></ex<>	n.s.				n.s.				n.s.			
H3c	WPR <kn< td=""><td>n.s.</td><td></td><td></td><td></td><td>n.s.</td><td></td><td></td><td></td><td>n.s.</td><td></td><td></td><td></td></kn<>	n.s.				n.s.				n.s.			
H3d	WPR <pa< td=""><td>0.066</td><td>0.037</td><td>0.075</td><td>0.065</td><td>0.166</td><td>0.083</td><td>0.045</td><td>0.114</td><td>n.s.</td><td></td><td></td><td></td></pa<>	0.066	0.037	0.075	0.065	0.166	0.083	0.045	0.114	n.s.			
H3e	WPR <ec< td=""><td>0.082</td><td>0.025</td><td>***</td><td>0.121</td><td>n.s.</td><td></td><td></td><td></td><td>0.107</td><td>0.027</td><td>***</td><td>0.207</td></ec<>	0.082	0.025	***	0.121	n.s.				0.107	0.027	***	0.207
H3f	WPR <sn< td=""><td>n.s.</td><td></td><td></td><td></td><td>-0.134</td><td>0.047</td><td>0.005</td><td>-0.161</td><td>0.1</td><td>0.033</td><td>0.002</td><td>0.156</td></sn<>	n.s.				-0.134	0.047	0.005	-0.161	0.1	0.033	0.002	0.156
H3g	WPR <ai< td=""><td>-0.107</td><td>0.026</td><td>***</td><td>-0.152</td><td>n.s.</td><td></td><td></td><td></td><td>-0.203</td><td>0.034</td><td>***</td><td>-0.346</td></ai<>	-0.107	0.026	***	-0.152	n.s.				-0.203	0.034	***	-0.346
H3h	WPR <pt< td=""><td>0.138</td><td>0.066</td><td>0.037</td><td>0.076</td><td>0.173</td><td>0.1</td><td>0.083</td><td>0.098</td><td>n.s.</td><td></td><td></td><td></td></pt<>	0.138	0.066	0.037	0.076	0.173	0.1	0.083	0.098	n.s.			
H3i	WPR <st< td=""><td>-0.253</td><td>0.026</td><td>***</td><td>-0.398</td><td>-0.176</td><td>0.069</td><td>0.011</td><td>-0.145</td><td>-0.345</td><td>0.044</td><td>***</td><td>-0.553</td></st<>	-0.253	0.026	***	-0.398	-0.176	0.069	0.011	-0.145	-0.345	0.044	***	-0.553
H4	WAP <wpb< td=""><td>0.822</td><td>0.06</td><td>***</td><td>0.678</td><td>0.475</td><td>0.089</td><td>***</td><td>0.496</td><td>1.304</td><td>0.229</td><td>***</td><td>0.466</td></wpb<>	0.822	0.06	***	0.678	0.475	0.089	***	0.496	1.304	0.229	***	0.466
H5	WAP <wpr< td=""><td>-0.272</td><td>0.051</td><td>***</td><td>-0.225</td><td>n.s.</td><td></td><td></td><td></td><td>-1.01</td><td>0.147</td><td>***</td><td>-0.6</td></wpr<>	-0.272	0.051	***	-0.225	n.s.				-1.01	0.147	***	-0.6
H1a	NAP <npb< td=""><td>0.565</td><td>0.043</td><td>***</td><td>0.61</td><td>0.533</td><td>0.058</td><td>***</td><td>0.705</td><td>0.868</td><td>0.145</td><td>***</td><td>0.412</td></npb<>	0.565	0.043	***	0.61	0.533	0.058	***	0.705	0.868	0.145	***	0.412
H1b	NAP <npr< td=""><td>-0.297</td><td>0.03</td><td>***</td><td>-0.394</td><td>-0.172</td><td>0.035</td><td>***</td><td>-0.26</td><td>-0.484</td><td>0.047</td><td>***</td><td>-0.696</td></npr<>	-0.297	0.03	***	-0.394	-0.172	0.035	***	-0.26	-0.484	0.047	***	-0.696
H1c	ENP <wap< td=""><td>0.94</td><td>0.055</td><td>***</td><td>0.69</td><td>1.022</td><td>0.153</td><td>***</td><td>0.506</td><td>0.583</td><td>0.046</td><td>***</td><td>0.581</td></wap<>	0.94	0.055	***	0.69	1.022	0.153	***	0.506	0.583	0.046	***	0.581
H1d	ENP <nap< td=""><td>-0.837</td><td>0.06</td><td>***</td><td>-0.493</td><td>-0.764</td><td>0.099</td><td>***</td><td>-0.461</td><td>-1.02</td><td>0.084</td><td>***</td><td>-0.657</td></nap<>	-0.837	0.06	***	-0.493	-0.764	0.099	***	-0.461	-1.02	0.084	***	-0.657

Need more research

Note: n.s. means no significance. a Model 1 based on all data, b Model 2 based on online survey data, c Model 3 based on field surveys data.

Results - Model comparison

For general public, e28 perceived risk of wind **WPB** energy is not important Different .39 .23 PA WECb WSb WENb influencing WAp1 (e17) WAP EC 53 factors (e2) (e3) (e1) WAp2 - e18 SN (e29 AI WPR (e23 PT .58 .72 WEr WLr WAr WHr ENP ST e7 (e6) e5 (e4) (e8) NECb NPB NSb (e9)-(e16) NAp1 NAP NAp2 e11 NHr NEr (e12)-NPR e13 ► NLr e14 NAr

Modified structural model of Model 3 (local residents)

CHAPTER 5. SUMMARY

Conclusion

- The public in Dalian City have shown a high acceptance for wind and nuclear energy. But prefer wind energy.
- There is **no competitive** relationship between acceptance of wind energy and attitude towards nuclear energy in the research area.

Discussion

• This may be due to that both wind and nuclear energy are considered as clean, new energy sources in China.

Conclusion

- Perceived benefits positively affect wind energy acceptance.
- For general public, perceived risks is **not significant**. For local residents, perceived risks is the most important factor negatively affecting acceptance.
- Most of the influencing factors on the acceptance of wind energy significantly differ between local residents and general public.

Discussion

 To enhance acceptance of wind energy, the government should more actively promote the benefits to general public. And try to alleviate the risk concerns of local residents.

- [1] Wüstenhagen R, Wolsink M, Bürer M J. Social acceptance of renewable energy innovation: An introduction to the concept. Energy Policy, 2007,35(5):2683-2691.
- [2] Desvallées L, Arnauld De Sartre X. In the shadow of nuclear dependency: Competing pathways and the social acceptance of offshore wind energy in France. Energy Research & Social Science, 2023,98:103029.
- [3] Greenberg M. Energy sources, public policy, and public preferences: Analysis of US national and site-specific data. Energy Policy, 2009,37(8):3242-3249.
- [4] 安喰基剛, 錦澤滋雄, 村山武彦. 風力発電事業の計画段階における環境紛争の発生状況と解決要因. 環境情報科学論文集, 2018,ceis32:185-190.
- [5] Cousse J, Wüstenhagen R, Schneider N. Mixed feelings on wind energy: Affective imagery and local concern driving social acceptance in Switzerland. Energy Research & Social Science, 2020,70:101676.
- [6] Sonnberger M, Ruddat M. Local and socio-political acceptance of wind farms in Germany. Technology in Society, 2017,51:56-65.
- [7] Liaoning Provincial Bureau of Statistics. Dalian's new energy generation capacity to grow 0.9% year-on-year in 2020. 2021.
- [8] Economic Daily. Hongyanhe demonstrates "zero carbon" heating. 2022.
- [9] Bollen K A, Stine R A. Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods & Research, 1992,21(2):205-229.
- [10] Duncan O D. Introduction to structural equation models. Elsevier, 2014.

Thanks for your listening!

Let's continue the conversation!

#iaia24

Post questions and comments in the IAIA24 app.

Kaiqi Liu, Shigeo Nishikizawa, Takehiko Murayama, Kultip Suwanteep

Tokyo Tech

Tokyo Institute of Technology

Japan

liu.k.ag@m.titech.ac.jp

nishikizawa.s.ab@m.titech.ac.jp

murayama.t.ac@m.titech.ac.jp

suwanteep.k.aa@m.titech.ac.jp

Appendix - Abbreviations

Abbreviations	Full form	Abbreviations	Full form
WD	Distance to the wind turbine	WEr	Perceived environmental risks of wind energy
EX	Experience with wind energy facilities	WLr	Perceived landscape risks of wind energy
KN	Perceived knowledge of wind energy	WAr	Perceived accident risks of wind energy
PA	Place attachment	NECb	Perceived economic benefits of nuclear energy
EC	Environmental concern	NSb	Perceived social benefits of nuclear energy
SN	Subjective norms	NENb	Perceived environmental benefits of nuclear energy
AI	Affective imagery of wind energy	NHr	Perceived healthy risks of nuclear energy
PT	Participation in wind energy projects	NEr	Perceived environmental risks of nuclear energy
ST	Social trust	NLr	Perceived landscape risks of nuclear energy
WPB	Perceived benefits of wind energy	NAr	Perceived accident risks of nuclear energy
WPR	Perceived risks of wind energy	ENP	Preference for wind and nuclear energy
NPB	Perceived benefits of nuclear energy	Ep	Individual preferences for wind and nuclear energy
NPR	Perceived risks of nuclear energy	Eb	A better energy source for Dalian
WECb	Perceived economic benefits of wind energy	Unstd.	Unstandardized path coefficients
WSb	Perceived social benefits of wind energy	S.E.	Standard error
WENb	Perceived environmental benefits of wind energy	Std.	Standardized path coefficient
WHr	Perceived healthy risks of wind energy	SEM	Structural equation model

Appendix – Map of Tuoshan wind farm

Appendix – Map of Dabeishan wind farm

Appendix – Village case

Map of Paozicun ○ Location of respondents

Acceptance of wind energy High Against Neural Support Wind turbines Buffer-1000m

0 0.050.1 0.2 0.3 0.4

Source: ArcGIS

Variables	Explanation	Question in questionnaire
Experience with wind energy facilities (EX)	Ever seen or visited a wind farm	I have seen or visited wind power plants.
Place attachment (PA)	Whether love the region (Dalian City)	I love this region.
Subjective norms (SN)	Are the people around you influencing your attitude towards wind energy	The support for wind energy from people around me (including family, friends, local community members, etc.) has motivated me to support wind energy.
Affective imagery (AI)	What is the first impression of wind energy	Wind energy leaves me a positive impression when mentioned it.
Participation in wind energy projects (PT)	Whether you are involved in the process of planning, supervision, etc. of wind farms	Whether you participated in the construction and planning process of wind power projects (in the form of being consulted or submitting unsolicited proposals, etc.)
Social trust (ST)	Whether there is trust in governments and companies in the wind energy sector.	I trust the government's policy and regulation of wind power project. I trust energy companies to operate and manage wind power plants.

Appendix - Demographic information

Characteristics	Itomo	Total N	=702	Online su	urvey N=341	Offline survey N=361		
Characteristics	liems	Number	Percentage	Number	Percentage	Number	Percentage	
Gender	Male	354	50.4%	160	46.9%	194	53.7%	
	Female	348	49.6%	181	53.1%	167	46.3%	
Age	Under 18	8	1.1%	5	1.5%	3	0.8%	
	18-30	155	22.1%	149	43.7%	6	1.7%	
	31-45	175	24.9%	159	46.6%	16	4.4%	
	46-60	143	20.4%	24	7.0%	119	33.0%	
	Over 60	221	31.5%	4	1.2%	217	60.1%	
Education level	Junior high and below	348	49.6%	3	0.9%	345	95.6%	
	Senior High school	36	5.1%	21	6.2%	15	4.2%	
	Junior college	40	5.7%	39	11.4%	1	0.3%	
	Bachelor degree	233	33.2%	233	68.3%	0	0.0%	
	Master or above	45	6.4%	45	13.2%	0	0.0%	
Annual income	Under RMB 10,000	147	20.9%	26	7.6%	121	33.5%	
	RMB 10,000–30,000	151	21.5%	36	10.6%	115	31.9%	
	RMB 30,000–60,000	139	19.8%	51	15.0%	88	24.4%	
	RMB 60,000–100,000	110	15.7%	79	23.2%	31	8.6%	
	RMB 100,000–150,000	95	13.5%	89	26.1%	6	1.7%	
	Over RMB 150,000	60	8.5%	60	17.6%	0	0.0%	
Electricity costs	Under RMB 20	16	2.3%	10	2.9%	6	1.7%	
	RMB 20-35	77	11.0%	49	14.4%	28	7.8%	
	RMB 36-50	229	32.6%	67	19.6%	162	44.9%	
	RMB 51-75	184	26.2%	93	27.3%	91	25.2%	
	Over RMB 75	154	21.9%	111	32.6%	43	11.9%	
	Unknown	42	6.0%	11	3.2%	31	8.6%	
Whether work	Unrelated	645	91.9%	287	84.2%	358	99.1%	
related to wind	Family related	39	5.6%	37	10.9%	2	0.6%	
energy	I related	15	2.1%	15	4.4%	0	0.0%	
	I and my family related	3	0.4%	2	0.6%	1	0.3%	
Residence time	Under 6 months	15	2.1%	14	4.1%	1	0.3%	
	0.5-1 year	21	3.0%	21	6.2%	0	0.0%	
	1-3 years	38	5.4%	38	11.1%	0	0.0%	
	3-5 vears	40	5.7%	40	11.7%	0	0.0%	
	5-10 years	61	8.7%	54	15.8%	7	1.9%	
	Over 10 years	527	75.1%	174	51.0%	353	97.8%	

#IAIA24 43

Appendix – Energy Preference

Which energy source is better for Dalian

Which energy source is preferred

Appendix – Negative impact

Noise perception of wind farm

Other negative impact of wind farm

Appendix - Statistical differences

	Gender					
Attributes	To nuclear					
	Online	Offline				
Т	0.759	-0.025				
P	0.448	0.980				

Results of t-test for nuclear energy

	Distance to n	uclear power pla	ant		
Attributes	Offline survey	/	Online surve	ey .	
	Less 20km	20-40km	40-60km	60-100km	Over 100km
Ν	299	62	36	250	55
Mean	3.418	3.315	3.875	3.892	3.764
SD	0.655	0.691	0.831	0.852	0.799
T/F	1.123		0.526		
Р	0.262		0.592		

Results of distance to nuclear power plant differences

Results of One-way ANOVA test for nuclear energy

Attributes	Age		Educati	on level	Annual	Income	Electric	ity Cost	Whether whethe	vork related r energy	Resider	nce time
	Online	Offline	Online	Offline	Online	Offline	Online	Offline	Online	Offline	Online	Offline
F	0.193	2.712	0.560	1.725	0.386	4.752	1.251	6.963	1.630	1.055	0.951	0.093
Р	0.942	0.030	0.692	0.180	0.858	<0.01	0.289	<0.01	0.182	0.368	0.448	0.912

Appendix - Discriminate validity

Tokyo Tech

Discriminate validity of the Model 2

Variables	ENP	NPR	NPB	NAP	WPR	WPB	WAP	AVE
ENP	0.892							0.796
NPR	0.275	0.825						0.681
NPB	-0.252	-0.547	0.743					0.552
NAP	-0.380	-0.513	0.743	0.830				0.689
WPR	0.077	0.742	-0.313	-0.233	0.780			0.608
WPB	0.109	-0.278	0.515	0.298	-0.242	0.655		0.429
WAP	0.422	0.035	0.289	0.291	-0.140	0.463	0.696	0.485

Note: the data on the diagonal are the square roots of AVE, and the data below the diagonal are correlation coefficients. All correlation coefficients are significant at 0.01 level.

Discriminate validity of the Model 3

Variables	ENP	NPR	NPB	NAP	WPR	WPB	WAP	AVE
ENP	0.928							0.862
NPR	0.516	0.733						0.538
NPB	-0.372	-0.525	0.646					0.417
NAP	-0.482	-0.728	0.690	0.750				0.562
WPR	-0.303	0.342	-0.110	-0.350	0.653			0.426
WPB	0.319	-0.210	0.080	0.316	-0.615	0.643		0.414
WAP	0.529	-0.104	0.088	0.410	-0.647	0.638	0.757	0.573

Note: the data on the diagonal are the square roots of AVE, and the data below the diagonal are correlation coefficients. All correlation coefficients are significant at 0.01 level.

Appendix - Model fit

Model fit

Goodness of fit indices	Throshold critoria	Model 1 ^a		Model 3 ^c	Whether
Goodness-or-in indices	mesnoù chtena	Test results	Test results	Test results	— passed
Parsimonious fit indices					
χ² (chi-square)	The small the better	370.893	323.091	259.604	Yes
DF (degrees of freedom)	The large the better	340	292	243	Yes
χ^2 /DF (normed chi-square)	<3	1.091	1.106	1.068	Yes
Incremental fit indices					
NFI (normed fit index)	>0.9	0.971	0.922	0.931	Yes
TLI (Tucker-Lewis index)	>0.9	0.997	0.991	0.995	Yes
IFI (incremental fit index)	>0.9	0.998	0.992	0.995	Yes
RFI (relative fit index)	>0.9	0.968	0.913	0.921	Yes
CFI (comparative fit index)	>0.9	0.998	0.992	0.995	Yes
Absolute fit indices					
RMSEA (root mean square error of approximation)	<0.08	0.011	0.018	0.014	Yes
GFI (goodness of fit index)	>0.9	0.971	0.922	0.931	Yes
AGFI (adjusted goodness of fit index)	>0.9	0.964	0.902	0.910	Yes

Note: a Model 1 based on all data, b Model 2 based on online survey data, c Model 3 based on offline surveys data.

Used Bollen-Stine Bootstrap correction

Appendix - Model 2

Hypothesized nath		Model 2 ^b			
пуро	nesizeu patri	Unstd.	S.E.	Р	Std.
H2a	WPB <wd< td=""><td>n.s.</td><td></td><td></td><td></td></wd<>	n.s.			
H2b	WPB <ex< td=""><td>n.s.</td><td></td><td></td><td></td></ex<>	n.s.			
H2c	WPB <kn< td=""><td>n.s.</td><td></td><td>Significa</td><td>nt</td></kn<>	n.s.		Significa	nt
H2d	WPB <pa< td=""><td>n.s.</td><td></td><td></td><td></td></pa<>	n.s.			
H2e	WPB <ec< td=""><td>0.123</td><td>0.049</td><td>0.012</td><td>0.145</td></ec<>	0.123	0.049	0.012	0.145
H2f	WPB <sn< td=""><td>0.188</td><td>0.034</td><td>***</td><td>0.338</td></sn<>	0.188	0.034	***	0.338
H2g	WPB <ai< td=""><td>0.235</td><td>0.048</td><td>***</td><td>0.297</td></ai<>	0.235	0.048	***	0.297
H2h	WPB <pt< td=""><td>n.s.</td><td></td><td></td><td>,</td></pt<>	n.s.			,
H2i	WPB <st< td=""><td>0.333</td><td>0.051</td><td>***</td><td>0.408</td></st<>	0.333	0.051	***	0.408
H3a	WPR <wd< td=""><td>n.s.</td><td></td><td></td><td></td></wd<>	n.s.			
H3b	WPR <ex< td=""><td>n.s.</td><td></td><td></td><td></td></ex<>	n.s.			
H3c	WPR <kn< td=""><td>n.s.</td><td></td><td></td><td></td></kn<>	n.s.			
H3d	WPR <pa< td=""><td>0.166</td><td>0.083</td><td>0.045</td><td>0.114</td></pa<>	0.166	0.083	0.045	0.114
H3e	WPR <ec< td=""><td>n.s.</td><td></td><td></td><td></td></ec<>	n.s.			
H3f	WPR <sn< td=""><td>-0.134</td><td>0.047</td><td>0.005</td><td>-0.161</td></sn<>	-0.134	0.047	0.005	-0.161
H3g	WPR <ai< td=""><td>n.s.</td><td></td><td></td><td></td></ai<>	n.s.			
H3h	WPR <pt< td=""><td>0.173</td><td>0.1</td><td>0.083</td><td>0.098</td></pt<>	0.173	0.1	0.083	0.098
H3i	WPR <st< td=""><td>-0.176</td><td>0.069</td><td>0.011</td><td>-0.145</td></st<>	-0.176	0.069	0.011	-0.145
H4	WAP <wpb< td=""><td>0.475</td><td>0.089</td><td>***</td><td>0.496</td></wpb<>	0.475	0.089	***	0.496
H5	WAP <wpr< td=""><td>n.s.</td><td></td><td></td><td></td></wpr<>	n.s.			
H1a	NAP <npb< td=""><td>0.533</td><td>0.058</td><td>***</td><td>0.705</td></npb<>	0.533	0.058	***	0.705
H1b	NAP <npr< td=""><td>-0.172</td><td>0.035</td><td>***</td><td>-0.26</td></npr<>	-0.172	0.035	***	-0.26
H1c	ENP <wap< td=""><td>1.022</td><td>0.153</td><td>***</td><td>0.506</td></wap<>	1.022	0.153	***	0.506
H1d	ENP <nap< td=""><td>-0.764</td><td>0.099</td><td>***</td><td>-0.461</td></nap<>	-0.764	0.099	***	-0.461

(e28) 39 **WPB** 48 62 0 .39 .23 .45 (e15) PA WECb WSb WENb .25 WAp1 WAP EC .53 (e3 (e1) (e2) WAp2 (e18) SN (e29) -. 16 07 AI 51 WPR 10 (e23 16 .76 PT 82 16 .47 .58 .72 .57 Eb WHr WEr WLr WAr ENP ST Ep .53 **e**6 (e7 e5 (e4) (e8) - NECb 2.2 .63 .79 NPB 46 ► NSb (e9)-(e16) .51 .57 .56 NAp1 (e10) NENb NAP .76 .81 NAp2 e20 (e11)-NHr .80 (e12)-NEr NPR .51 71 NLr (e13)-> .61 Modified structural model of Model 2 NAr (e14)-

Note: n.s. means no significance. b Model 2 based on online survey data

#IAIA24

穴

Tokyo Tech

Appendix - Model 3

Hypothesized nath		Model 3 ^c			
пуротп	esized path	Unstd.	S.E.	Р	Std.
H2a	WPB <wd< td=""><td>n.s.</td><td></td><td></td><td></td></wd<>	n.s.			
H2b	WPB <ex< td=""><td>n.s.</td><td></td><td></td><td></td></ex<>	n.s.			
H2c	WPB <kn< td=""><td>n.s.</td><td>Sic</td><td>nifica</td><td>nt</td></kn<>	n.s.	Sic	nifica	nt
H2d	WPB <pa< td=""><td>n.s.</td><td></td><td>J</td><td></td></pa<>	n.s.		J	
H2e	WPB <ec< td=""><td>-0.046</td><td>0.017</td><td>0.007</td><td>-0.148</td></ec<>	-0.046	0.017	0.007	-0.148
H2f	WPB <sn< td=""><td>n.s.</td><td></td><td></td><td></td></sn<>	n.s.			
H2g	WPB <ai< td=""><td>0.117</td><td>0.022</td><td>***</td><td>0.33</td></ai<>	0.117	0.022	***	0.33
H2h	WPB <pt< td=""><td>0.217</td><td>0.08</td><td>0.007</td><td>0.147</td></pt<>	0.217	0.08	0.007	0.147
H2i	WPB <st< td=""><td>0.209</td><td>0.028</td><td>***</td><td>0.556</td></st<>	0.209	0.028	***	0.556
H3a	WPR <wd< td=""><td>-0.135</td><td>0.035</td><td>***</td><td>-0.202</td></wd<>	-0.135	0.035	***	-0.202
H3b	WPR <ex< td=""><td>n.s.</td><td></td><td></td><td></td></ex<>	n.s.			
H3c	WPR <kn< td=""><td>n.s.</td><td></td><td></td><td></td></kn<>	n.s.			
H3d	WPR <pa< td=""><td>n.s.</td><td></td><td></td><td></td></pa<>	n.s.			
H3e	WPR <ec< td=""><td>0.107</td><td>0.027</td><td>***</td><td>0.207</td></ec<>	0.107	0.027	***	0.207
H3f	WPR <sn< td=""><td>0.1</td><td>0.033</td><td>0.002</td><td>0.156</td></sn<>	0.1	0.033	0.002	0.156
H3g	WPR <ai< td=""><td>-0.203</td><td>0.034</td><td>***</td><td>-0.346</td></ai<>	-0.203	0.034	***	-0.346
H3h	WPR <pt< td=""><td>n.s.</td><td></td><td></td><td></td></pt<>	n.s.			
H3i	WPR <st< td=""><td>-0.345</td><td>0.044</td><td>***</td><td>-0.553</td></st<>	-0.345	0.044	***	-0.553
H4	WAP <wpb< td=""><td>1.304</td><td>0.229</td><td>***</td><td>0.466</td></wpb<>	1.304	0.229	***	0.466
H5	WAP <wpr< td=""><td>-1.01</td><td>0.147</td><td>***</td><td>-0.6</td></wpr<>	-1.01	0.147	***	-0.6
H1a	NAP <npb< td=""><td>0.868</td><td>0.145</td><td>***</td><td>0.412</td></npb<>	0.868	0.145	***	0.412
H1b	NAP <npr< td=""><td>-0.484</td><td>0.047</td><td>***</td><td>-0.696</td></npr<>	-0.484	0.047	***	-0.696
H1c	ENP <wap< td=""><td>0.583</td><td>0.046</td><td>***</td><td>0.581</td></wap<>	0.583	0.046	***	0.581
H1d	ENP <nap< td=""><td>-1.02</td><td>0.084</td><td>***</td><td>-0.657</td></nap<>	-1.02	0.084	***	-0.657

Note: n.s. means no significance. c Model 3 based on offline survey data

Dalian Energy Development Plan

Overall objective:

By 2025, the installed capacity of non-fossil energy power generation will reach more than 11.85 million kilowatts, accounting for 64% of the total, with non-fossil energy power generation accounting for more than 70% of the total.

Wind energy:

Completing the approved 1.9 million kilowatt offshore wind power project. Promote the construction of a 10 million kilowatt wind power base in Dalian by utilizing both land and sea.

Nuclear energy:

Develop nuclear power in an orderly manner.

Commence preliminary construction work on the Zhuanghe Nuclear Power Station.

Additionally Wind and nuclear are the top two energy sources in Dalian's energy development.

Source: Dalian City Energy Development "Fourteenth Five-Year" Plan

Appendix – Hypotheses result

H1: There is a negative correlation between public attitude towards nuclear energy and wind energy acceptance H2a: WD has a negative effect on WPB H3a: WD has a positive effect on WPR H2b: EX has a positive impact on WPB H3b: EX has a negative impact on WPR H2c: KN has a positive effect on WPB H3c: KN has a negative effect on WPR H2d: PA has a positive effect on WPB H3d: PA has a positive effect on WPR H2e: EC has a positive impact on WPB H3e: EC has a negative effect on WPR H2f: SN has a positive effect on WPB H3f: SN has a negative impact on WPR H2g: AI has a positive impact on WPB H3g: AI has a negative impact on WPR H2h: PT has a positive effect on WPB H3h: PT has a negative impact on WPR H2i: ST has a positive impact on WPB H3i: ST has a negative impact on WPR H4: WPB has a positive impact on WAP H5: WPR has a negative effect on WAP

	Support (\vee) or rejec	t (×)	
Hypotneses	Among all public (Model 1)	Among general public (Model 2)	Among local residents (Model 3)
H1	×	×	×
H2a	×	×	×
H3a	\checkmark	×	\checkmark
H2b	×	×	×
H3b	×	×	×
H2c		×	×
H3c	×	×	×
H2d	×	×	×
H3d			×
H2e	×	\checkmark	×
H3e	×	×	×
H2f			×
H3f	×		×
H2g		\checkmark	
H3g		×	
H2h		×	
H3h	×	×	×
H2i			
H3i			
H4			
H5		×	\checkmark

Note: " $\sqrt{}$ " means the hypotheses is supported, " \times "means the hypotheses is rejected

· 1-

Appendix – Text analysis

Frequency statistics of free text

Bonk	Total		Online survey		Offline survey	
Rank	Word	Frequency	Word	Frequency	Word	Frequency
1	worry	437	worry	209	worry	228
2	wind power plant	211	human health	75	wind power plant	159
3	noise	112	environment	72	noise	104
4	nuclear power plants	95	nuclear leakage	64	primary issue	65 ^{nuc}
5	nuclear radiation	89	nuclear accident	58	electromagnetic radiation from wind turbines	56
6	human health	88	wind power plant	52	nuclear power plants	developm 51
7	environment	86	nuclear radiation	51	climate	48
8	nuclear accident	77	nuclear power plant	44	nuclear radiation	38
Q	nuclear leakage	76	nuclear	30	treated radioactive	38
3	nuclear leakaye	10	energy	53	water	50
10	primary issue	65	wind power plant accident	34	Dalian	31

High-frequency words relationship network Source: author