FROM AVOIDANCE TO OFFSETS: HOW TO MEASURE BIODIVERSITY TO NET GAIN AMBITION

Sophia L Raithel

Senior Technical Specialist, Fauna & Flora United Kingdom

Sophia.Raithel@fauna-flora.org

https://www.fauna-flora.org/

About Fauna & Flora

We are an international nature conservation organisation.

We work closely with local conservation partners around the world in 46 countries to save nature together.

We harness this collective expertise to inspire positive change globally.

Business	
& Natu	
ure	

Strategic partnerships	With leading businesses to create and implement best practice
Global influence	Working with global initiatives, government and funders to create enabling frameworks, standards, policies and legislation
Supporting Fauna & Flora geographies	Responding to threats and opportunities
Thought leadership	Global trends, good practice guidance
Collaborative initiatives	Collective practical action to restore nature
Education & capacity- building	Business, government, NGOs and communities
Philanthropic partnerships	Philanthropy, nature positive

Our strengths – long history of working with companies on biodiversity/net positive; strong technical skills; understanding 'grass roots' conservation; advising on metrics, verifying approach, measuring impact

Can EIA facilitate the transition to net gain and nature positive mechanisms?

NPI roadmap from mitigation to enhancement?

Credit: TBC

Common baseline assessment components and gaps

Conventional components of baseline

- Quantified <u>area</u> of expected disturbance by *inatural*, modified and critical habitat loss
- Mapped spatial extent of ecosystem or habitat
- Identification of national and global ecosystem
- List of likely occurring species by taxa
- Species as listed on IUCN and national red lists
- Ecosystem services and processes identified

Challenges for quantification *

- Lack of indicators that provide <u>quantitative</u> <u>assessment of the condition</u> or quality of an ecosystem
- Lack of long term thinking and planning to enable net gain approaches
 - * Existing projects

Applying an ecosystem area and condition into one metric

and the factor of

Applying an ecosystem condition approach

- Evaluate components of ecosystem condition: composition, structure, and function
- Use tailored indicators specific to a ecosystem type
- Standardise to national ecosystem approaches or assessments, if available
- Utilize multiple survey tools (field assessments, remote sensing, eDNA)
- Consider scientific, traditional and Indigenous knowledge

© Hem Manita / Fauna & Flora

How can this inform the application of the mitigation hierarchy during the IA process?

- Applies ecological equivalence from avoidance to offsets during IA
- Enhanced spatial avoidance of high quality or good condition natural habitat areas
- Remove "grey" area between natural and modified habitat
- Identifies restoration potential in the study area
- Facilitates monitoring of change overtime
- Enhances feasibility of monitoring NNL/NPI requirements

Benefits of assessing baseline with an ecosystem approach

Site level management

- Enhance decision making of land based management actions
- ✓ Facilitate monitoring and reporting of biodiversity management
- ✓ Facilitate reporting of biodiversity requirements for legislation, externally and internally

Financial Institutions/Private corporations:

- Enhances reporting of biodiversity footprint impacts on ecosystems
- ✓ Facilitates monitoring and reporting of NNL/NPI commitments
- ✓ Informs state of nature and ecosystem integrity for voluntary disclosures (ie. TNFD)
- Integrate biodiversity at every decision making level

Policy-makers:

- Aligns big picture pledges within Kunming-Montreal Global Biodiversity Framework goals and NBSAPs
- ✓ Address landscape change pressures by ecosystem
- Integrate spatial planning to address land use and sea use change
- Facilitate monitoring framework for the GBF goals

Ambition with "dummy data"

Angle American Quality Hectares PU impact by sites & ecosystem types			Business u	nit Sit	te Y	ear
Anylo American Qua	ICAN QUAILTY HECTARES BU IMPACT by sites & ecosystem types		DEB	\sim AI	I ~ 2	2024 ~
- 2805 Total Cumulative Loss	400 Total Loss/Gains Balance	2805 NNL target	-86% Progress to target	3205 Total bio-management gains (Q ha)		
Site	Ecosystem					
Total impact (loss and gains) of Loss/Gains Balance (QH ha) -577	Q ha per ecosystem/habitat type	Ecosystem	Cumulative Loss (Q ha)	NNL target	Loss/Gains Balance (Q ha)	Progress to NNL
		Southern African bushveld	d -182	182	198	9%
Succulent Karoo		Kennedy lake ecosystem	-189	189	-34	-118%
		Musina mopane bushveld	-233	233	322	38%
Musina mopane bu		Kalahari xeric savanna	-240	240	165	-31%
Southern African b		Succulent Karoo	-344	344	511	49%
		Limpopo Ridge Bushveld	-760	760	-185	-124%
Kalahari xeric savan		Canadian High Arctic Tuno	dra -85/	857	-5//	-16/%
Kennedy lake ecosy		Ιοται	-2805	2805	400	-80%
Limpopo Ridge Bus						
Canadian High Arct		450	205	5	700)
-500	0 500 Q ha	Rehabilitation (Q ha)	Restoration	(Q ha)	Offsets (C	շ ha)

Quantifying NPI in practice

Integrating *area* x *condition* metric allow for in project life cycle planning processes to identify future land use

Current work...

Mine closure in Newfoundland, Canada

• Restoration of Boreal Forest ecosystem

Smelter in BC Canada

 Revegetation after significant die off of vegetation from air emissions

Mine in Australia

 Long list of compliance monitoring requirements

Can EIA facilitate the transition to net gain and nature positive mechanisms?

Fauna XFlora

Sophia Raithel Sophia.Raithel@fauna-flora.org

OUR PURPOSE

Our shared purpose is to protect the diversity of life on Earth, for the survival of the planet and its people.

OUR MISSION

We work closely with local conservation partners around the world to save nature, together.

We harness this collective expertise to inspire positive change globally.